Transient Heat Pipe Modeling Using
THROHPUT

Michael L. Hall
Group XTM, Transport Methods
P.O. Box 1663, MS-D409
Los Alamos National Laboratory
Los Alamos, New Mexico 87545 USA
Email: hall@lanl.gov

Presentation to the High Temperature Heat Pipe Modeling
and Experimental Techniques Experts Meeting at
Knolls Atomic Power Laboratory

7/20 /93

This presentation and additional information
can be found on the THROHPUT home page at

http://www.lanl.gov/THROHPUT



Outline

History

Current Capabilities
— Modeled Phenomena

— Numerical Models

Main Equation Set

Results

Future Work



History

e THROHPUT stands for Thermal Hydraulic Response Of
Heat Pipes Under Transients

e Developed as a Research Code for my Ph. D. Thesis

(Thesis copies available on request)

e Initial Problem:
— Cylindrical Lithium Heat Pipe (SP-100)
— Startup from a Frozen State to Steady State Operation
— Space-based or Terrestrial
— Three Phases of Lithium & Noncondensable Gas
— Sintered or Annular Screen Wick

— Molybdenum Wall



History (cont)

e Some problems matching experiments —
Kinetic evaporation/condensation model to blame? No ...
e Phillips Laboratory — 0.4 man-year additional work

— Determined problem: liquid in tension (negative liquid

pressure)
— Much better experimental matches
— Added additional fluids: potassium, sodium, mercury

and silver

e Additional research by a doctoral student into Boltzmann

Transport Equation solutions

e Currently a research code, not a production code

e Simplifications / Improvements / Additions are possible
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Current Capabilities:

Modeled Phenomena

Radial and Axial Convection

Radial and Axial Conduction

Mass & Heat Transfer at Wick Surface

Surface Tension (Capillary Pressure)

via separate gas and liquid pressures

Liquid Recession into the Wick

Pooling into the Core

Axial Diffusion and Effusion



Current Capabilities:

Numerical Models

e Main Equation Set
— Area-Averaged Navier Stokes Equations

— Fully-Implicit Transient Solution

e Auxiliary Models
— Parabolic Radial Temperature Distribution
— Two Capillary Pressure Models
— Radial and Axial Melt Front Propagation

— Diftusion — Dusty Gas Model

— All auxiliary models solved implicitly with main equa-

tion set



Main Equation Set:

Mass Conservation

Mixture Continuity:
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Main Equation Set:

Energy Conservation

Mixture Internal Energy:
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Main Equation Set:
Energy (cont) & Momentum

Conservation

Solid Internal Energy:
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Mixture Momentum:
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Main Equation Set:

Constitutive Equations

Mixture State:
Liquid State:
pL = p (P,T})
Solid State:
ps = ps (Ts)

Volume Fraction Sum:

Capillary Pressure Relation:

System variables are: pm, p;, ps, Xn, Qm,y, s, Pm, P,
Vm, ‘/l7 Tma fIk) TS and Tw

The interphase transfer terms (I'zy, Qzy, ng) are all func-
tions of pm, Xn, Im, 1], Ts, and Ty, and are defined im-
plicitly in the Radial Model.
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Results: Problem Description

SPAR-8 heat pipe (3/8/85 test)

lithium working fluid, molybdenum pipe

Lengths: 0.4 m evaporator, 0.09 m adiabatic, 3.51 m con-

denser

Outside radius ~ 1 cm.

Heat output used as heat input
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Results:

SPAR-8 Experimental Comparison
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Time lag thought to be caused by using the experimental heat output
value as the heat input value in THROHPUT.
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Results:

SPAR-8 Velocity Distributions
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Results:
SPAR-8 Capillary Pressure
Differences at 13,260 s
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Experimental Comparison Problems

Not much experimental data

No intrusive measurements

Only exterior temperatures are available

Numerical modeler not present at experiments;

experimenters not aware of measurement needs

Only global heat output is known; heat input is needed
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Future Work
Production version of THROHPUT

Additional wick geometries (groove, arterial, slab)

Arbitrary heat pipe cross-section (e.g. square)

Two- or three-dimensional model

Additional fluids and wall materials

Entrainment model

Graphical output

User-specified heat pipe failure criteria

Limit prediction (sonic, viscous, entrainment, capillary,
boiling)
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